On the Behavior of Velocity Fluctuations in Rapidly Rotating Flows
نویسندگان
چکیده
The behavior of velocity fluctuations subjected to rapid rotation is examined. The rapid rotation considered is any arbitrary combination of two basic forms of rotation, reference frame rotation and mean flow rotation. It is recognized that the two types of rotating flows differ in the manner in which the fluctuating fields are advected. The first category is comprised of flows in rotating systems of which synoptic scale geophysical flows are a good example. In this class of flows the fluctuating velocity field advects and rotates with the mean flow. In the rapid rotation limit, the Taylor-Proudman theorem describes the behavior of this class of fluctuations. Velocity fluctuations that are advected without rotation by the mean flow constitute the second category which includes vortical flows of aerodynamic interest. The TaylorProudman theorem is not pertinent to this class flows and a new result appropriate to this second category of fluctuations is derived. demonstrates that general fluctuating velocity fields are rendered two-dimensional and horizontally non-divergent in the limit of any large combination of reference frame rotation and meanflow rotation. The concommitant ‘geostrophic’ balance of the momentum equation is, however, dependent upon the form of rapid rotation. It is also demonstrated that the evolution equations of a two-dimensional fluctuating velocity fields are frame-indifferent with any imposed mean-flow rotation. The analyses and results of this paper highlight many fundamental aspects of rotating flows and have important consequences for their turbulence closures in inertial and non-inertial frames.
منابع مشابه
Calculation of the relativistic bulk tensor and shear tensor of relativistic accretion flows in the Kerr metric.
In this paper, we calculate the relativistic bulk tensor and shear tensor of the relativistic accretion ows in the Kerr metric, overall and without any approximation. We obtain the relations of all components of the relativistic bulk and shear tensor in terms of components of four-velocity and its derivatives, Christoffel symbols and metric components in the BLF. Then, these components are deri...
متن کاملمطالعه عددی انتقال حرارت در فضای مابین دو مخروط ناقص هممحور
The behavior of the flow between two coaxial conical cylinders with the inner one rotating and the outer one stationary is studied numerically. The angular velocity of the inner cone cylinder was raised step by step from the rest until reaching its final speed. In this work we first present a numerical simulation of the flow characteristics and the heat transfer mechanism of a fluid in the spac...
متن کاملDerivation of turbulent energy in a rotating system
Energy equation for turbulent flow in a rotating system was derived in terms of second order correlation tensors, where the correlation tensors were functions of space coordinates, distance between two points and time. To reveal the relationship of turbulent energy between two points, one point was taken as origin of the coordinate system. Due to rotation, the Coriolis force played an important...
متن کاملThe eddy heat-flux in rotating turbulent convection
The three components of the heat-flux vector F = ρCp〈uT 〉 are numerically computed for a stratified rotating turbulent convection using the NIRVANA code in a flat box. The latitudinal component Fθ proves to be negative (positive) in the northern (southern) hemisphere so that the heat always flows towards the poles. As a surprise, the radial heat-flux Fr peaks at the equator rather than at the p...
متن کاملMathematical Modeling of Potential Flow over a Rotating Cylinder (RESEARCH NOTE)
Potential flow over rotating cylinder is usually solved by the singularity method. However,in this paper a mathematical solution is presented for this problem by direct solution of the Laplace’sequation. Flow over the cylinder was considered non-viscous. Neumann and Dirichlet boundaryconditions were used on the solid surfaces and in the infinity, respectively. Because of non-viscous flow,the La...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997